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LARGE ARRAY SIGNAL PROCESSING
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X (t) =d; (t)+1;(t) +n; ()

y

Reed, Madllett, Brennan
(RMB) notation: w, x

20 =3 % (1)
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LARGE ARRAY SIGNAL PROCESSING
THE PHASE-LOCK LOOP ARRAY

X, (t) = V2P s(t) sin(w,t + 6,) + N (t)
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LARGE ARRAY SIGNAL PROCESSING

* Reference Signal Requirements
« must be correlated with the desired signal
« must be uncorrelated with interference

« EXAMPLE: NASA Deep-Space Modulation Format

 residual carrier usually present
. * data modulated onto square-wave subcarrier

Data-modul ated Residua Data-modulated
subcarrier carrier subcarrier

e PLL Array Output SNR (perfect reference):
NV2Ps(t)sin(o, (1)) yP

N o2 o’

R
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LARGE ARRAY SIGNAL PROCESSING
REFERENCE SIGNAL GENERATION

v v v Reference signal
Adaptive / Signal
Array ) Processing

v

Note: if aresidual carrier isnot available,
Array output more complex signal processing often
yields a useful reference signal.
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LARGE ARRAY SIGNAL PROCESSING

COMPLEX VECTOR FORMULATION OF THE
LARGE ARRAY SIGNAL PROCESSING PROBLEM

X :[Xl(t),Xz(t),""XN (t)]T; W :[W1’W2""’WN]T
X=X,+X, +X,

2 =YW X () =WTX=2,0)+70)+20

Py =Elz;)["; R =Elz(®)I; P,=Elz,®)[

P, P
SNR=—"—=—"5; wantW,,
P+P P

u

that maximizesSNR

V. Vilnrotter



LARGE ARRAY SIGNAL PROCESSING
NARROWBAND ASSUMPTION:
X4 =98(t)U, signal times "sourcedirection vector"
= Ay (O{explj Wy + 95 O} [1€%2,--- e ]
DESIRED ARRAY OUTPUT SIGNAL AND POWER:
y,(t) =W X, =s{t)W U,

P, =E|st)FIWT Uy P=E|st)PWTUUS W
=WTE[s(t)U, s (U, ]W
=W E[X, X TW
=W o, W
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LARGE ARRAY SIGNAL PROCESSING
THE “UNDESIRED” COMPONENTS:
®, =®, +®,=E[X X" ]+E[X, X ]=E[X,X,]
P=P+P.=W'®d W+tW'®d W=W'Td W

“SIGNAL TO INTERFERENCE PLUS NOISE RATIO”

P W'd, W WU, |
anR=F0 W PW g gy p LW U |
P W, W WTe, W
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MAXIMIZATION OF SINR (known look direction)

EXAMPLE 1: (I)I:O, (I)u:(I)nZO'2|, (I)al=i2|
0]
N 2
W U,
W*TU 2 IZ | d,l
NR=E |s(t) | - o _Ersp? S D
WTd, W ) )
o’ 2 Iw
i=1

Schwarz inequality:

i N 2 N 2
< w P Jug |
i=1 i=1

N
D W ug
=1

with equality iff w, =cu,.
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LARGE ARRAY SIGNAL PROCESSING

The optimum weights are Wy i =U;. Lettingc=1/0?  the
optimum weight vector can be expressed as

Wopt :(I)alud
. E ° P
andyields SNR= |S(2t)| Z|ui F=N—
o - o

* Note that with optimum weights, the array output SNR
ISN timesthe elemental SNR, aswith aPLL Array
* Need to determine “source direction” separately
e once source direction is determined, the optimum
weights are also known

V. Vilnrotter 12



LARGE ARRAY SIGNAL PROCESSING

EXAMPLE2: ®, =0, ®, 6 =®_ =diag[o,,0:,-,0:]

62 0 - O
0 2 ... 0 _
o= 727 7| ef=dago 05 ,07]
0 O oy |
N 2
W U,
W*TU 2 IZ_: I d,i
NR=E|st)f Vel _ g gy p 2 )
W7o, W S o7 w [
— | |
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LARGE ARRAY SIGNAL PROCESSING
First rewrite inner product, then apply Schwarz inequality:

N
oW, —' IZ |
i=1 = =
2
N U, . N
ow b Zo- | | X )
SNR _ i=1 i i=1 =1 i :Zlud | (3)
E|s(t) I ZN:U-2|W|2 : ZG w2 = o/
— | | — | |
- PR Ug i Uy i
withequality iff cw =c—; — w_ . =—
p pt, o2
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LARGE ARRAY SIGNAL PROCESSING

The optimum weight vector can again be expressed as

Wopt — (I)JIU d (4)

SINR of combined array output:
From (3), the SNR of the array output with optimum weightsis:

9NR = |Wothd | ZN:E|S(t)| ZN:—
WS D, W,

opt =1 =1 O-

The maximum value of the SINR is achieved by the optimum
weights W,,. When these weights are applied, the SINR of
the output is equal to the sum of elemental SINR-s.
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LARGE ARRAY SIGNAL PROCESSING

EXAMPLE 3: thegeneral case: @, =P, + P _ (Applebaum)

The covariance matrix of the general undesired component
IS Hermitian, therefore it can be diagonalized by a unitary

transformation. Let A be aunitary matrix, so that
A=A ATA=ATA =
and define the “transformed” vectors as
Y, =AX,, Y, =AX,, Y, =AX,

These “transformed” vectors represent the original input
vectorsin anew, “rotated” coordinate system, and lead to
aminor conceptual modification to the system block diagram.
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LARGE ARRAY SIGNAL PROCESSING

v A \

Matrix transformation
* * V - AW
V

2(0)=3 v, y,0)
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LARGE ARRAY SIGNAL PROCESSING

L et the covariance matrix of the s gnal sin the rotated
coordinate system be designated by A&, defined as

v =E|lY YT]=EAX, (AX)T|=E[AX XTAT]
:AE[XUXLT]A =A® A"

If the columns of A correspond to the eigenvectors of @
then the transformation diagonalizes @ , with the elgenvalues
of @  occupying the diagonal:

A4 0 0
v, =diag[4,4,, -, A4 =| 0 . O
0 0 A
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LARGE ARRAY SIGNAL PROCESSING

Maximization of SINR for the general case:

The solution for the case of adiagonal covariance matrix has
already been solved in Example 2: the optimum weights are
proportional to the ratio of source-direction vector (in the rotated
coordinates) to the total noise power. Defining the “rotated
source-direction” as Q = AU, , the optimum weights can be
obtained from equation (4) by inspection:

-1
Vopt :Tu Qd
But V =AW impliesthat W, =A™V, , sowecan write

opt ?
W, = AW, 'AU,]=[A ¥, AU,
. )
=[A7Y A]"U,; using[ABC] ™ =[C'B*A™] ©)
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LARGE ARRAY SIGNAL PROCESSING

Since W, =A® A" itfollowsthat
AP A=AAD ATIA=0,

Substituting into (5) yields the optimum weight vector that
maximizes SINR for the general case:

Wopt — [A_lTuA]_lud — (I)Hl Ud

Since a constant scale factor, (£, applied to the weight vector
does not change the SINR, we can also write:

Wopt :,U(I)Jl Ud
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LARGE ARRAY SIGNAL PROCESSING
PROCESSORSFAMILIAR FROM THE LITERATURE:
1. Conventional Beamformer: W, = (constant)U

2. NAME (noise-alone matrix inver se):
-1
Wopt :(I)u Ud

3. SPNAMI (signal-plus-noise matrix inver se):

-1
Wopt =0 Ud
Both NAME and SPNAMI achievethe same SINR
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LARGE ARRAY SIGNAL PROCESSING

THE EQUIVALENCE OF USING (I);l U; OR® U;
TO MAXIMIZE SINR (Applebaum-Compton notation: W, X.)

Recalthat @ =@, +® =E|s(t)[PU, U, +®,

Theinverse of ® can be calculated with the help of the
following Matrix Inversion Lemma: if B isanonsingular
N x N matrix, Z isan N x1 column vector, and f is ascalar,
thentheinverseof Q=B - 47 Z" isgivenby

Q'=B*'-aB'Z2'Z2'B™
whee a +p87=2"B7Z’
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LARGE ARRAY SIGNAL PROCESSING
Applying thislemmato @, wefind itsinverse as
=@, -a® 'U,U,D/
Evaluating @ and substituting, after some algebra we get
® ‘U, = (constant) ® ‘U]

Since multiplying the weight vector by a constant does not affect
the SINR, these two weight vectors produce identical SINR.
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LARGE ARRAY SIGNAL PROCESSING

Eigenvector Approach from linear algebra:

Recall that the SINR can be expressed as the ratio of two
“quadratic forms’:

*T
S :W*T(I)dW
P WT®, W

Theratio of two quadratic forms attains its maximum value
when W isthe eigenvector associated with the largest

eigenvalueof [® '@ ] . Thisapproach will be detailed
and demonstrated in Part 11.
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LARGE ARRAY SIGNAL PROCESSING

CLOSED-LOOP ESTIMATION OF OPTIMUM WEIGHTS.

1. THE (MODIFIED) APPLEBAUM LOOP: consider asingle
branch of the array, with weights determined as areal-time
correlation of the array output with each elemental signal

X; (1) ) \\‘ / / 2(t) (AC notation)

w, () =k[_|uuy - (2)2(7)|dz

dvfj"t(t) = Kluuj = x O z(0)

or, in vector form:

IR AW W uu =X z(0)]

Need the desired signal direction in advance. dt
V. Vilnrotter 25
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LARGE ARRAY SIGNAL PROCESSING

From previous slide: dd_W = k[,u U, - X Z(t)] (6)
t

Recalling that z(t) = X'W and substituting into (6), yields
AW _uu —xxw], WY ke XTW =k U
at at
Using the approximation @ = X' X" — E(X*XT) , we get
-%%+k@WEKuUL (7)

In the steady-state d W/dt = O, yielding (i>W$ =u U, or

W_=u®U, =W

opt
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LARGE ARRAY SIGNAL PROCESSING

2. THELMSLOORP: if the differential equation describing
the APPLEBAUM loop is modified slightly, we obtain the
differential equation for the LM S loop:

X (t) o O A/ 2(1)
2
AW  kdw=kP  (8) "
dt
P=E[X rit)]=X r(t)=P conjugate r(t)
et) =r(t)—z(t) o

M e

Needs reference signal, but not the desired signal direction.
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LARGE ARRAY SIGNAL PROCESSING

RELATIONSHIP BETWEEN APPLEBAUM AND
LMSARRAYS

Weights of the Applebaum array satisfy the differential equation

dd—\iv+k(i)W§k,u U,

Weights of the LM S array satisfy the differential equation

dd—\iv+ k®W =kP.  But P=E[Xr(t)] = E[s (t)r (t)]U],
It followsthat if 4 U, =P, theLMSand Applebaum arrays will
perform identically, both maximizing SINR. However, the LMS

array does not need to know the source direction to track the signal.
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LARGE ARRAY SIGNAL PROCESSING

3. THEDISCRETE VERSION OF THE LM S LOOP-

Starting with dd—\iv +k®W = kP and substituting for
the estimates, we get

dd—\iv = K[P-®W]=Kk[X'r(t) =X X"W]
=k X"[r(t) - z(t)] = k X &(t)
which means that each component satisfies
dw; (t)

o =kx O (9)
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LARGE ARRAY SIGNAL PROCESSING

Next, approximate the derivative with the difference

dw, _ W (n+1)—w(n)
it At
where W, (n) is a sample of thei-th weight at timet_ = nAt .

I

Rewriting (9) in terms of the difference yields
W (n+1) —w () = 7% (Me(n); 7= kAt

which can be put into aform known asthe “L M S algorithm”

W, (n+1) = w, (n) + 7% (n) £(n)

where g(n)=r(n)-2z(n) .
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LARGE ARRAY SIGNAL PROCESSING

SOME PROPERTIESOF THELMSALGORITHM:

W, (n+2) = w, (n) + X () £(n)

Needs areference signal (correlated with the received signal)
Does not need to know the source direction

Complexity per update: order N (for N antennas)

Magnitude of updates diminish as output signal “approaches’
the reference signal (error approaches zero)
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LARGE ARRAY SIGNAL PROCESSING

THE “CONSTANT MODULUSALGORITHM” (CMA)
Recall the form of the discrete LM S algorithm derived before:

W, (N+1) = w (n) + 7% () £(n)

If welet e(n) = (|s(n) |° —sg) s(n) , the resulting algorithm
Isknown asthe CMA:

W, (n+1) = w, () + (| s(n) > ~2)x (n) s(n)
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LARGE ARRAY SIGNAL PROCESSING

SOME PROPERTIES OF THE CMA:

W (n+12) = w, () + (| s(n) * - 2)x (n) s(n)

The CMA does not need either asourcedirection or a
reference signal, only the “target” power of the desired source
Any change in source power is attributed to interference, which
the CMA attempts to cancel

Order N complexity (multiplies per update)
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LARGE ARRAY SIGNAL PROCESSING

SUMMARY OF REPRESENTATIVE “"ORDER N”
ALGORITHMSFOR DSN APPLICATIONS

e LMSALGORITHM:
* Needsareferencesignal (filtered residual carrier, or other
correlated reference derived via signal processing)
o Adaptively maximizes SINR (nulls interference)
« CMA:
* Needs estimate of desired signal power only
o Adaptively maximizes SINR (nulls interference)

OPEN ISSUES: convergence rate under “realistic’ DSN
spacecraft tracking conditions
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LARGE ARRAY SIGNAL PROCESSING

PART |l: REAL-TIME DEMONSTRATIONS

LMSALGORITHM (F. Pallara):
 Real-time convergence from initial weight vector
to optimum, with and without noise
* Demonstration of gradient descent (min. of error surface)

NORMALIZED CMA (M. Srinivasan):
* New algorithm, needs estimate of aver age signal power
» Can phase up array with “noise-like” signals from quasars

EFFICIENT EIGENVECTOR ALGORTHM (C. Lee):
» Based on matrix theory result on maximization of ratio
of two quadratic forms
o Efficient, iterative implementation
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